. Практическое применение Теории Графов

Практическое применение Теории Графов

Собрание интересных и полезных материалов по множеству направлений — без ограничений в темах.

Позвонить: +7 (384) 445-09-33

Практическое применение Теории Графов

Родившись при решении головоломок и занимательных игр, теория графов стала в настоящее время простым, доступным и мощным средством решения вопросов, относящихся к широкому кругу проблем. Графы буквально вездесущи. В виде графов можно, например, интерпретировать схемы дорог и электрические цепи, географические карты и молекулы химических соединений, связи между людьми и группами людей. За последние четыре десятилетия теория графов превратилась в один из наиболее бурно развивающихся разделов математики. Это вызвано запросами стремительно расширяющейся области приложений. Применяется при проектировании интегральных схем и схем управления, при исследовании автоматов, логических цепей, блок- схем программ, в экономике и статистике, химии и биологии, в теории расписаний. Поэтому актуальность темы обусловлена с одной стороны популярностью графов и связанных с ними методов исследований, а с другой, не разработанная, целостная система ее реализации.

Решение многих жизненных задач требует длинных вычислений, а иногда и эти вычисления не приносят успеха. В этом и состоит проблема исследования. Возникает вопрос: нельзя ли для их решения найти простое, рациональное, короткое и изящное решение. Упрощается ли решение задач, если использовать графы? Это определило тему моего исследования: «Практическое применение теории графов»

Целью исследования было с помощью графов научиться быстро решать практические задачи.

Гипотеза исследования. Метод графов очень важен и широко применяется в различных областях науки и жизнедеятельности человека.

Задачи исследования:

1.Изучить литературу и ресурсы сети Интернет по данной проблеме.

2.Проверить эффективность метода графов при решении практических задач.

3. Сделать вывод.

Практическая значимость исследования заключается в том, что результаты несомненно вызовут интерес у многих людей. Разве не пытался кто-то из вас построить генеалогическое дерево своей семьи? А как это сделать грамотно? Руководителю транспортного предприятия наверняка приходится решать проблему более выгодного использования транспорта при перевозке грузов с места назначения в несколько населенных пунктов. Каждый школьник сталкивался с логическими задачами на переливание. Оказывается они решаются при помощи графов легко.

В работе используются следующие методы: наблюдение, поиск, отбор, анализ.

История возникновения теории графов

Родоначальником теории графов принято считать математика Леонарда Эйлера (1707-1783). Историю возникновения этой теории можно проследить по переписке великого ученого. Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года.

"Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов.

[Приложение рис.1] Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может. Кенигсбергские же мосты расположены так, что их можно представить на следующем рисунке [Приложение рис.2], на котором A обозначает остров, а B , C и D – части континента, отделенные друг от друга рукавами реки

По поводу обнаруженного им способа решать задачи подобного рода Эйлер писал:

"Это решение по своему характеру, по-видимому, имеет мало отношения к математике, и мне непонятно, почему следует скорее от математика ожидать этого решения, нежели от какого-нибудь другого человека, ибо это решение подкрепляется одним только рассуждением, и нет необходимости привлекать для нахождения этого решения какие-либо законы, свойственные математике. Итак, я не знаю, каким образом получается, что вопросы, имеющие совсем мало отношения к математике, скорее разрешается математиками, чем другими".

Так можно ли обойти Кенигсбергские мосты, проходя только один раз через каждый из этих мостов? Чтобы найти ответ, продолжим письмо Эйлера к Маринони:

"Вопрос состоит в том, чтобы определить, можно ли обойти все эти семь мостов, проходя через каждый только однажды, или нельзя. Мое правило приводит к следующему решению этого вопроса. Прежде всего, нужно смотреть, сколько есть участков, разделенных водой, – таких, у которых нет другого перехода с одного на другой, кроме как через мост. В данном примере таких участков четыре – A , B , C , D . Далее нужно различать, является ли число мостов, ведущих к этим отдельным участкам, четным или нечетным. Так, в нашем случае к участку A ведут пять мостов, а к остальным – по три моста, т. е. Число мостов, ведущих к отдельным участкам, нечетно, а этого одного уже достаточно для решения задачи. Когда это определено, применяем следующее правило: если бы число мостов, ведущих к каждому отдельному участку, было четным, то тогда обход, о котором идет речь, был бы возможен, и в то же время можно было бы начать этот обход с любого участка. Если же из этих чисел два были бы нечетные, ибо только одно быть нечетным не может, то и тогда мог бы совершиться переход, как это предписано, но только начало обхода непременно должно быть взято от одного из тех двух участков, к которым ведет нечетное число мостов. Если бы, наконец, было больше двух участков, к которым ведет нечетное число мостов, то тогда такое движение вообще невозможно… если можно было привести здесь другие, более серьезные задачи, этот метод мог бы принести еще большую пользу и им не следовало бы пренебрегать".

📎📎📎📎📎📎📎📎📎📎

Цель проекта

Мы предоставляем площадку для быстрого доступа к разнообразной информации. Подборки формируются без привязки к узким тематикам, чтобы читатель всегда находил что-то интересное или полезное для себя.

Категории материалов

События и факты

Краткие сводки по темам, вызывающим наибольший интерес среди пользователей.

Общая информация

Тексты на повседневные, бытовые, региональные и популярные темы.

Подборки

Собранные по схожести темы статьи и материалы разного характера.

Архивные разделы

Доступ к ранее опубликованным материалам и тематическим блокам.

Контакты

📍 г. Кемерово, ул. Полезная, д. 21, офис 410

☎ +7 (384) 445-09-33

📧 info@site.ru

🕓 Приём писем: ежедневно, 08:00 – 22:00

Отказ от ответственности

Контент, размещённый на сайте, поступает из общедоступных источников и обрабатывается автоматически. Администрация не участвует в создании и проверке опубликованных материалов.

При наличии претензий по поводу авторских прав, обратитесь к нам по контактному адресу — мы оперативно отреагируем на обоснованное обращение.

Сайт не зарегистрирован как СМИ и не несёт ответственности за точность информации.

Размер шрифта: